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Abstract 

Background:  Spatial transcriptomics technologies are revolutionizing our under-
standing of intra-tumor heterogeneity and the tumor microenvironment by revealing 
single-cell molecular profiles within their spatial tissue context. The rapid development 
of spatial transcriptomics methods, each with unique characteristics, makes it chal-
lenging to select the most suitable technology for specific research objectives. Here, 
we compare four imaging-based approaches—RNAscope HiPlex, Molecular Cartogra-
phy, Merscope, and Xenium—alongside Visium, a sequencing-based method. These 
technologies were employed to study cryosections of medulloblastoma with extensive 
nodularity (MBEN), a tumor chosen for its distinct microanatomical features.

Results:  Our analysis reveals that automated imaging-based spatial transcriptomics 
methods are well-suited to delineate the intricate MBEN microanatomy and capture 
cell-type-specific transcriptome profiles. We devise approaches to compare the sensi-
tivity and specificity of different methods, along with their unique attributes, to guide 
method selection based on the research objective. Furthermore, we demonstrate 
how reimaging slides after the spatial transcriptomics analysis can significantly improve 
cell segmentation accuracy and integrate additional transcript and protein readouts, 
expanding the analytical possibilities and depth of insight.

Conclusions:  This study underscores important distinctions between spatial transcrip-
tomics technologies and offers a framework for evaluating their performance. Our find-
ings support informed decisions regarding methods and outline strategies to improve 
the resolution and scope of spatial transcriptomic analyses, ultimately advancing 
spatial transcriptomics applications in solid tumor research.
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Background
Single-cell RNA sequencing of dissociated cells (scRNA-seq) or nuclei (snRNA-seq) 
has become a standard method in cancer research for dissecting deregulated transcrip-
tional programs, as well as understanding cell types and cell fate trajectories [1]. How-
ever, in sc/snRNA-seq analyses, the spatial relationships between cells in their native 
tissue context are lost. Various emerging spatial transcriptomics (ST) approaches, which 
acquire molecular gene expression profiles of cells in situ, reveal the spatial relationships 
among individual cells [2–5]. ST technologies provide new insights into tumor hetero-
geneity and the interactions of tumor cells with their microenvironment [6, 7]. These 
methods can be broadly classified into sequencing-based (sST) and imaging-based (iST) 
approaches. The sST analysis employs a readout through sequencing after transcripts 
have been released from the sample and captured directly or via hybridized probes. This 
allows for an unbiased analysis of the whole transcriptome. The iST methods use multi-
plexed single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) in a tar-
geted manner, as defined by the probe panel, along with transcript identification through 
imaging. In ST experiments involving tumor samples, the different methods have their 
own specific strengths and weaknesses, and numerous questions remain regarding the 
optimal technical implementation of ST technologies and experimental design. On the 
one hand, the organism, tissue type, and sample processing methods (e.g., formalin-
fixed, paraffin-embedded (FFPE), or fresh frozen tissue) will affect the results. On the 
other hand, there is currently no consensus on determining relevant parameters for 
quality control, including the following: (i) the sensitivity of the method, defined by the 
probability that a given transcript is detected; (ii) target specificity, as reflected by the 
false discovery rate (FDR); (iii) the specific genes and their total number that are ade-
quately covered in the experiment; and (iv) the assignment of transcripts to individual 
cells.

The resolution of transcriptome analysis and cell type annotation depends on the 
experimental raw data, as well as their preprocessing and downstream analysis. For 
instance, a critical step in the workflow is segmenting cells for transcript assignment and 
cell type identification. Various dyes are available for staining nuclei, membranes, and 
whole cells, but results vary based on the organism, tissue type, and sample processing. 
Additionally, the microscopy system, such as wide-field versus confocal microscopes, 
along with the used objectives and detector sensitivity, influences image quality in terms 
of resolution and signal-to-noise ratio, thus affecting segmentation of nuclei and cells. 
Numerous computational methods, including Cellpose [8], Baysor [9], and Mesmer [10], 
have been developed for segmentation, with their results being highly dependent on the 
input data.

High-throughput iST commercial instruments use automated imaging and integrated 
microfluidics or pipetting robotics to complete the respective workflows. The follow-
ing platforms were used in this study: (i) Molecular Cartography (MC) on the MC 1.0 
instrument (Resolve Biosciences) [11], (ii) Multiplexed error-robust fluorescence in situ 
hybridization (MERFISH) [12] on the Merscope V1 (Vizgen) system [13], referred to as 
“Merscope” in the following, (iii) hybridization with barcoded padlock probes targeting 
RNA directly [14] as implemented on the Xenium Analyzer instrument (10x Genomics), 
which we refer to as “Xenium” [15]. Several reports compared the performance of these 
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and other instruments for FFPE cancer tissue samples [16, 17] as well as mouse brain 
FFPE [18] and fresh frozen [19] tissue sections. However, a study using the same fresh 
frozen cancer samples across different iST platforms is lacking. Fresh frozen samples can 
be advantageous regarding RNA integrity and can facilitate unbiased single nuclei tran-
scriptome and/or open chromatin profiling by scATAC-seq from the same sample.

Here, we applied a comparative ST analysis for a case study focusing on medulloblas-
toma tumors with extensive nodularity (MBEN) [20]. MBENs are a histopathologically 
defined subtype of medulloblastoma, which is among the most common embryonal cen-
tral nervous system tumors in children [21, 22]. Due to mutations in the sonic hedgehog 
pathway, MBEN mimics the development of cerebellar granule neuronal precursors and 
thus features the complete developmental trajectory [20]. This is reflected in the MBEN 
tissue structure, which is characterized by a segregation into an internodular (prolifer-
ating cerebellar granular neuronal precursor-like malignant cells together with stromal, 
vascular, and immune cells) and nodular compartment (postmitotic, neuronally differ-
entiated malignant cells). For our study, we used the same MBEN patient samples for 
MC, Merscope, and Xenium in comparison to RNAscope HiPlex (“RNAscope”) [23, 
24] as a well-established reference for low-throughput iST. In addition, snRNA-seq and 
sST on the Visium platform (10x Genomics) were included as methods for an unbiased 
transcriptome analysis. Based on our experience with these six different methods, we 
identified informative QC parameters and metrics to assess sensitivity and specificity. 
Furthermore, we show how technological differences affect the results and provide guid-
ance for the experimental design for the analysis of fresh frozen tumor samples by iST.

Results
ST of MBEN samples

The analysis of MBEN samples with their unique microanatomy and cellular composi-
tions was performed on fresh frozen tissue sections from four distinct patients (Addi-
tional file 1: Table S1) using different ST methods (Fig. 1). These patients were previously 
studied with sequencing, microdissection, and spatial technologies [20].

Exemplary tissue images are presented for hematoxylin and eosin (H&E) staining 
(Fig. 1a) alongside the various ST technologies utilized (Fig. 1, Additional file 2: Fig. S1, 
Additional file 3: Table S2). These included Visium (Fig. 1b), RNAscope (10 gene panel, 
Fig. 1c), MC (100 gene panel, Fig. 1d), Merscope (138 gene panel, Fig. 1e), and Xenium 
(345 gene panel, Fig.  1f ) (Supplementary Dataset 1). All iST panels encompassed the 
10 genes from RNAscope, while MC, Merscope, and Xenium panels shared 96 genes. 
The MBEN tumor microanatomy is visible in the H&E staining, and its structure was 
highlighted by all iST methods at the transcript level, with the transcription of NRXN3 
and LAMA2 as marker genes for the nodular and internodular compartments, respec-
tively (Fig. 1). However, the Visium analysis did not offer sufficient spatial resolution to 
distinctly delineate the two tumor compartments, as indicated by the NRXN3/LAMA2 
expression ratio (Fig. 1b). Additionally, we incorporated snRNA-seq data generated on 
the Chromium platform as a reference for a single-cell transcriptome analysis of solid 
tumor samples.
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ST image acquisition and reimaging of slides

For Visium and RNAscope experiments, image acquisition is decoupled from transcript 
detection and decoding. For Visium, H&E images were acquired on a slide scanner, and 
the RNAscope iST data was acquired by spinning disk confocal microscopy (SDCM). 
The commercial MC 1.0, Merscope V1, and Xenium instruments provide automated 
image acquisition on a built-in wide-field fluorescence microscope. The three systems 
differ in objectives, cameras, and preprocessing software (Table 1). All systems generally 
decode the transcript identities from fluorescent signals across several rounds of stain-
ing, imaging, and destaining and yield transcript coordinates and a matching tissue map 
as a DAPI image.

To compare the resolution of the iST platforms, we imaged 0.31 µm multicolor fluores-
cent particles across all systems. We analyzed the full width at half maximum (FWHM) 
of the beads (Additional file  4: Fig. S2). For comparison, we included SDCM images 
obtained with 40× and 60× oil immersion objectives under the same conditions used for 
RNAscope and reimaging, respectively. Overall, the observed FWHM was very similar 
for Xenium (474 ± 55 nm) and Merscope (480 ± 85 nm). For MC, the FWHM was only 
352 ± 50 nm, which could indicate a deconvolution step in the onboard image process-
ing pipeline before image stitching. The optical resolution of the automated microscopy 
systems limits the separation of crowded (highly expressed) transcripts of the same gene 
and the total number of transcripts that can be detected. In contrast, transcripts of dif-
ferent genes can be separated even when localizing to the same pixel. This is achieved 
through an intelligent combinatorial barcoding codebook design, along with a suf-
ficiently large number of imaging rounds and colors, as well as the inclusion of the z 
coordinates for decoding. This holds true for Xenium and Merscope, where we found 
a minimal distance between any two transcripts that was below one pixel. For MC, the 
minimal distance between any two transcripts was larger than one pixel (Table 1).

The iST systems used in this study implement different smRNA-FISH protocols. 
The most prominent difference is the presence (Xenium, RNAscope) or absence 
(MC, Merscope) of secondary signal amplification and clearing of the tissue section 

Fig. 1  Overview of ST technologies compared in this study. Marker genes NRXN3 (magenta, nodular 
compartment), LAMA2 (green, internodular compartment), and MKI67 (orange, proliferating cells) are shown 
for sample MB295. a H&E reference staining [20]. b Visium. c RNAscope. d Molecular Cartography. e Merscope. 
f Xenium
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(Merscope only). To estimate the signal-to-noise and signal-to-background ratios, we 
also analyzed actual transcript spots in single-tile z stacks (Additional file 5: Fig. S3a). 
Unfortunately, these are not provided for Xenium (even upon request to 10x Genom-
ics) and are, therefore, missing from this assessment. As we could not match the pro-
vided raw data (single tile stacks) confidently to the actual transcript coordinates, 
spots on the images were called using RS-FISH [25]. Then, we analyzed line profiles 
(x-direction) spanning 10 pixels on either side of the spot center. The background 
levels were more homogeneous for Merscope as expected due to the clearing step. 
However, the signal-to-noise ratio was slightly higher for MC and even higher, but 
also more variable for RNAscope (Additional file 5: Fig. S3b). Last, the signal-to-back-
ground ratio was higher and more variable for RNAscope as expected for a method 
relying on secondary signal amplification. Overall, we conclude that the experimental 
procedures for all analyzed methods result in spots that can be readily separated from 
background. We anticipate that the major challenge lies rather in the reidentification 

Table 1  Feature overview of automated iST platforms

a Data are averages of median values and their standard errors and refer to the shared 96 gene panel
b Based on 10 gene panel shared with RNAscope
c Different background probes were used for the different technologies
d Probes that displayed a signal intensity in the range of the background value had low spatial autocorrelation and a higher 
minimal distance to its nearest neighbor as described in the text
e Slide is glued to chamber
f Reported as median ± median absolute deviation (see the “Methods” section for details)
g Experimental steps that might require sample-to-sample optimization

MC Merscope Xenium

Detected features per cella 21 ± 2 23 ± 4 25 ± 1

Detected transcripts per cella 74 ± 11 62 ± 14 71 ± 13

Correlation with RNAscopeb r = 0.74 r = 0.65 r = 0.82

Features with cumulative transcript counts in range of 
background signala,c

29 ± 8 43 ± 2 18 ± 2

Average FDR (%) 0.35 ± 0.2 5.23 ± 0.9 0.47 ± 0.1

Probes with low specificityd 12 ± 3 17 ± 3 7 ± 3

Reimaging Yese No Yes

Run time instrument (days) 4 1–2 2

Hands-on time to prepare slides(days) 1.5 5–7 1.5

FWHM (0.31 µm beads) (nm)f 352 ± 50 480 ± 85 474 ± 55

Magnification 50x 60x Not provided

Numerical aperture (NA) 1.2 1.4 Not provided

Pixel size (nm) 138 108 212

z-stacks distance (µm) 0.36 0.7 0.75

z-stacks number 32 7 48

z-stacks number DAPI 32 7 12 (every 3 µm)

Imaging rounds 8 18 15

Colors 2 3 4

Optimization parametersg Quenching Tissue clearing 
and bleaching

NA

Minimal distance between transcripts (in one z-plane) 138 nm (= 1 pixel) 3.4 nm 2.6 nm
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of the same spots across all imaging rounds required for decoding the combinatorial 
barcodes.

After the ST run, conducting a reimaging step may be beneficial to acquire higher 
resolution images (e.g., improved DAPI images for cell segmentation, see below) or to 
include additional imaging modalities such as H&E, membrane, or immunostaining. For 
MC and Xenium, this process is straightforward since tissue integrity is preserved dur-
ing the runs and standard slide formats are utilized (Additional file 2: Fig. S1).

We have developed a workflow for MC and Xenium that involves reimaging the slides 
using SDCM, with the resulting images registered to the original wide-field DAPI images 

Fig. 2  Reimaging and segmentation. a Reimaging workflow for MC and Xenium slides. b Widefield overview 
DAPI image, zoomed-in and segmented image for MC. c Same as panel b after applying the MindaGap 
software to fill the non-overlapping line between images. d Same region as panels b and c after reimaging 
with the spinning disk microscope. e The gap between images introduces artifacts in stitching and 
registration, leading to the artificial generation of duplications for 0.15% of the transcripts. f Segmentation for 
Merscope with membrane staining. Left: DAPI-stained wide-field image; middle: membrane staining; right: 
segmentation based on DAPI signal and membrane staining. g DAPI images (zoomed in on the indicated 
regions) of the Xenium slide and segmentation based on SDCM and widefield images for tumor tissue 
MB266. The region overview is represented as a transcript density map. The fraction of transcripts assigned to 
segmented nuclei or cells was 68% for Xenium SDCM nuclei (Cellpose-based segmentation of Xenium slide 
reimaged by SDCM), 59% for Xenium nuclei (Cellpose-based segmentation on the original Xenium image), 
and 95% for Xenium cells (original segmentation provided by the Xenium workflow). The cell expansion used 
for the latter segmentation covers nearly all transcripts. However, this is associated with artifacts, as indicated 
for the cells marked with arrowheads. For quantification, see Additional file 6: Fig. S4
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obtained from the automated systems (Fig. 2a). Reimaging of Merscope slides was not 
tested because the sample clearing step prior to the run removes all tissue components 
except RNA and DNA. To overlay images of the tissue obtained from a different micro-
scope, images (maximum intensity projections) were first stitched together and then 
registered to the DAPI images from the iST analysis of the MC or Xenium system. This 
approach allows for the integration of the cells’ transcriptome profile with additional 
readouts.

Although stitching and registration are generally seen as standard image processing 
tasks, they can be challenging in practice due to several factors. First, multiple rounds 
of transcript detection (MC: 8, Merscope: 18, Xenium: 15) involving washing, bleach-
ing, and recoloring can compromise tissue integrity, making reimaging to enhance the 
DAPI signal ineffective. While we have not observed this in our MBEN samples, we do 
not rule it out for other tissue types or additional staining procedures (e.g., for proteins 
or DNA). Second, registration becomes difficult when the tissue is not firmly attached to 
the slide, causing deformation during the imaging processes, or when stitching is inac-
curate on either the registration source or template. We have rarely noticed deformation, 
and when it does occur, it is mostly limited to single cells rather than large tissue areas. 
Stitching artifacts were an issue for MC (see below), but these could be resolved by using 
elastic transformations instead of affine ones. Lastly, evaluating the quality of the regis-
tration results is difficult because the intensity distributions across the tissue and even 
within single cells vary significantly between confocal and widefield images, rendering 
correlation metrics unsuitable. Practically, we performed a pairwise overlay of the DAPI 
images from different modalities and visually inspected the results.

Image processing and cell segmentation

To assign transcripts to individual cells after segmentation, several image processing 
steps were performed. Unless noted otherwise, we used segmentation based on DAPI 
staining (MC), DAPI and membrane staining (Merscope), and DAPI staining with cell 
expansion (Xenium) as the default workflows for the various systems. We find that the 
quality of DAPI images is critical and strongly relies on experimental factors (tissue qual-
ity and staining) as well as technical aspects, namely image acquisition parameters (exci-
tation intensity, exposure time, dynamic range of the detector), image resolution  and 
out-of-focus signal for the wide-field microscopes used in these systems. Therefore, it is 
essential to optimize the DAPI signal-to-noise ratio and to avoid too low a signal as well 
as overexposure.

The DAPI image quality obtained with the default settings of automated iST systems 
can be insufficient for resolving single cells in the highly cell-dense MBEN tissue sec-
tions. To evaluate the impact of this issue for the subsequent preprocessing and seg-
mentation methods, we also acquired SDCM images for MC and Xenium (referred to as 
“MC SDCM” and “Xenium SDCM”). In cell-dense regions, analysis of the original wide-
field images can yield ambiguous results. This is demonstrated for the MC workflow in 
Fig.  2b–d. The analysis also highlighted stitching artifacts caused by non-overlapping 
images, resulting in black strips that bisect cells spanning across imaging tiles (Fig. 2b). 
On the image analysis side, Gaussian blurring can mitigate this issue (Fig.  2c). Still, 
the inaccurate stitch borders may lead to duplicate transcripts. To further explore this 
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concern, the confocal images were registered, and the transcript duplicates were elimi-
nated (Fig. 2d). These duplicates were identified at a low but still detectable frequency of 
0.15% across all transcripts (Fig. 2e). It is important to note that inaccurate stitch bor-
ders in the registration template (i.e., the original DAPI image) hinder the use of robust 
affine registration models in most cases, as they result in systematic shifts across the 
large dimensions of the imaged areas. Instead, we employed elastic registration with 
bUnwarpJ in Fiji [26], which locally adjusts the images at inaccurate stitch borders, yield-
ing excellent results despite being less robust and more contingent on initial registration 
parameters. This type of stitching error was not observed with Merscope and Xenium 
systems. Lastly, the option available for Merscope to incorporate membrane staining 
into the standard workflow can enhance cell segmentation in wide-field areas, as illus-
trated in Fig. 2f. The same objective can be addressed for Xenium with the newly intro-
duced multi-tissue stain mix [27]. It combines nuclear (DAPI), membrane (ATP1A1, 
E-Cadherin, CD45), cytoplasmic (18S rRNA), and cytoskeletal (αSMA, Vimentin) stains 
to facilitate cell segmentation.

In general, segmentation with Cellpose [8] using the DAPI signal yielded good results, 
and the SDCM images showed a 15–30% higher count of segmented nuclei. This is dem-
onstrated for sample MB266 in Additional file 6: Fig. S4a–d. Approximately 71% (MC) 
and 68% (Xenium) of the total detected transcripts were found within the segmented 
nuclei. In contrast, nuclei segmentation on the corresponding widefield image resulted 
in roughly 10% fewer assigned transcripts to nuclei (MC, 58%; Xenium, 59%). This dis-
crepancy can be partly attributed to the lower total number of segmented nuclei in the 
widefield images (~ 28% for MC and ~ 15% for Xenium in the case of MB266). However, 
it is important to note that not only does the number of segmented cells or nuclei matter, 
but also their size and shape. More transcripts were detected in larger cells. Further-
more, the area covered by segmented cells/nuclei also needs to be considered. Simply 
extending segmented nuclei to include cytoplasmic transcripts led to some incorrectly 
assigned transcripts, resulting in a mixed transcriptome from different cells (Fig.  2g). 
Notably, the improved segmentation result from SDCM DAPI reimaging does not stem 
from higher resolution per se (Additional file 4: Fig. S2), but rather from the suppression 
of out-of-focus light in confocal microscopy, which yields more contrasted and detailed 
nuclei (Additional file 6: Fig. S4e–f).

Sensitivity of ST methods

The sensitivity of ST methods can be defined as the fraction of transcripts detected. 
To assess this parameter, we analyzed the distribution of the total number of tran-
scripts detected (“transcripts”) as well as the number of genes (“features”) for the 
shared 96 gene panel common to all ST methods except RNAscope. To eliminate the 
confounding effect of segmentation, we conducted a spatial binning analysis as a seg-
mentation-free approach. The number and type of transcripts were determined within 
spatial bins (48.74 × 48.74 µm) that correspond to the area of a circular Visium spot, 
which is approximately 2375 µm2 in size. The iST techniques clearly outperformed 
the Visium sST method regarding the number of transcripts and features in this com-
parison (Fig. 3a). While increasing the sequencing depth might improve the Visium 
results, we still expect that Visium’s sensitivity will remain considerably lower than 
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that of the iST techniques. Among the latter group, MC yielded the highest number 
of transcripts per bin, while the number of features was similar across all automated 
iST methods. Interestingly, the spatial binning analysis yielded a bimodal distribution 
for Xenium, indicating the presence of tissue regions with decreased transcript cov-
erage. The bins within the lower transcript distribution were enriched in the outer 
regions of the tissue in line with the observation that tissue borders often suffer more 
damage during freezing and cutting processes (Additional file 7: Fig. S5a).

Next, the number of transcripts or features was calculated per cell for the 96 gene 
set (Fig.  3b). This comparison revealed only minor sensitivity differences among 
the automated iST instruments. The well-established RNAscope method consist-
ently produced high numbers of transcripts/features per cell for the 10 shared genes 

Fig. 3  Sensitivity of ST methods. a Density ridge plots showing transcript and feature counts per spatial bin 
(48.74 µm side length square), equivalent to the area of one Visium spot. b Density ridge plots of transcript 
and feature counts per cell after segmentation for 96 shared genes. c Same as panel b, but for the 10 shared 
genes included in the RNAscope panel. d Correlations of transcript counts between different iST methods, 
with the dashed line indicating the equivalent number of transcripts detected for the two methods 
compared. Correlations of automated iST with snRNA-seq data are provided in Additional file 7: Fig. S5b–d
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(Fig.  3c). This result confirms its use as an smRNA-FISH reference in the field. We 
then conducted a pairwise comparison of the detected mean transcripts per cell 
across the different iST methods for the shared gene set (Fig. 3d). Some genes with 
lower expression levels, such as BOC, appeared to be better detected on a per-cell 
basis by Merscope and Xenium compared to MC. This might also stem from varia-
tions in the segmentation protocol, as the extension of the cells in the Xenium analy-
sis results in nearly complete coverage of the tissue area.

The same analysis was applied in reference to snRNA-seq, which has a reported detec-
tion efficiency of 14–15% for the Chromium 3′-RNA v2 chemistry (10x Genomics) used 
in our experiments (Additional file 7: Fig. S5b–d). The resulting correlation coefficients 
of iST methods with snRNA-seq were between 0.53 and 0.63, which is somewhat lower 
than the coefficients between the iST methods themselves, ranging from 0.7 to 0.84 
(Fig. 3d). On average, the number of a given transcript per nucleus or cell was 2.3- to 2.5-
fold higher for the iST methods than for snRNA-seq (Fig. 3b, Additional file 7: S5b–d). 
This suggests that the detection efficiency of the iST methods is approximately 33–37%.

Overall, the automated iST methods produced very similar results, with MC showing 
a slightly lower count of less abundant transcripts per cell when using different default 
segmentation methods. When assessing the number of transcripts and molecules per 
cell, all iST techniques demonstrated higher sensitivity than snRNA-seq performed with 
the Chromium v2 chemistry.

Specificity of automated iST methods using RNAscope as a reference

To assess ST specificity, we used the 10 genes mapped in the RNAscope data as a refer-
ence. We calculated the correlations of the mean number of transcripts per cell for these 
10 genes. The highest correlation was found between RNAscope and Xenium (Fig. 4a). 

Fig. 4  Comparison with RNAscope. a Correlation of gene expression across different automated iST 
methods with RNAscope for the 10 shared genes. The dashed line represents the same number of transcripts 
detected by the two methods being compared and indicates that 7 out of 10 (MC) and 8 out of 10 genes 
(Merscope, Xenium) exhibited a higher number of transcripts per cell/nucleus, while CNTN2 was identified 
more effectively with all automated iST methods. b Analysis of marker gene co-expression from the pairwise 
Pearson correlation coefficient
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Next, we computed pairwise correlation coefficients for transcripts within a cell for each 
of the different methods (Fig. 4b).

This correlation analysis indicated that the RNAscope data accurately reflected the 
MBEN tissue microanatomy described in ref. [20]. Marker genes of the nodular com-
partment (RBFOX3, NRXN3) and those of the internodular compartment (GLI1, 
TRPM3, LAMA2, and PTCH1) showed high positive correlations within their respec-
tive groups but were neither correlated nor anti-correlated between the two groups. The 
Merscope data was most similar to the pattern of (anti-)correlations between gene pairs 
observed in the RNAscope data (coefficient of determination R2 = 0.72), while this pat-
tern was somewhat less apparent for the other methods (MC, R2 = 0.45; Xenium, R2 = 
0.58) (Additional file  8: Table  S3). This type of assessment relies on prior knowledge 
about the spatial expression patterns of a given tissue and can be implemented after cell 
segmentation as a quality assessment for specific marker genes that exhibit distinct spa-
tial relations, as demonstrated here for MBEN.

Specificity of iST methods inferred from background probes

Next, we assessed specificity by relating the signal from fluorescently labeled control 
probes, referred to as background probes here, which lack a complementary sequence in 
the sample across different length scales (Fig. 5). It is important to note that the manu-
facturers supplied the background probes, and information regarding their sequences is 
lacking. The three iST methods also utilize different controls (Additional file 9: Table S4). 
MC and Merscope rely on the binding of numerous probes to achieve a sufficient signal. 
Consequently, false positive signals typically arise from the read-out probes rather than 
the primary probes, as a single, incorrectly bound primary probe yields fluorescence sig-
nals below the detection limit and will therefore be “invisible”. In the case of Xenium, 
due to the amplification of the signal from a single padlock probe, both off-target bind-
ing of primary and secondary probes must be considered. Accordingly, unspecific pri-
mary probes are also included in the kit.

By comparing the sum of all signals from a given probe across the entire tissue, we 
identified 29 ± 8 (MC), 43 ± 2 (Merscope), and 18 ± 2 (Xenium) probes for which the 
signal range fell within that of the background probes (Fig. 5b). Among these, the genes 
GFI1, LMX1 A, IL4, FOXJ1, CD19, TMEM119, MOG, CD69, and GFI1B exhibited con-
sistently low expression values across all three automated iST technologies. This could 
indicate true negative signals or RNAs that are difficult to target, e.g., due to stable 
secondary structures. Based on the evaluations of target and background probes, we 
calculated global, segmentation-free FDR values of 0.41 ± 0.2% (MC), 5.23 ± 0.9% (Mer-
scope), and 0.47 ± 0.1% (Xenium). According to these average global FDR estimates, the 
specificity is quite similar for MC and Xenium, with Merscope showing a higher FDR 
value.

The average FDR value does not account for specific signals that are simply low in 
abundance. Therefore, we evaluated the spatial distribution of the target probes (Fig. 5a). 
We computed their spatial autocorrelation using Moran’s I [28, 29] and assessed 
the minimal distance between probe signals targeting the same RNA. The analysis of 
Moran’s I was based on the premise that a false positive signal due to technical issues 
would be randomly distributed (I = 0). In contrast, a lowly abundant true positive signal 
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Fig. 5  Specificity analysis comparing target and background probes. Data are shown for MB266. a Approach 
for the specificity analysis across different length scales. Coordinates for three different transcripts are 
represented in purple (NRXN3), green (LAMA2), and orange (MKI67). Left: whole tissue analysis with target and 
background probes ranked by summing all signals detected for each probe. Middle: spatial autocorrelation 
of probe signal calculated using Moran’s I. This value increases if a given cell’s signal (indicated by outgoing 
distance vectors) is similar to the average signal of neighboring cells at distance r, as shown by the 
connecting vectors, weighted by 1/r between two cells (vector thickness indicates greater weights). Right: 
minimal distance to the nearest probe signal of the same type. This parameter helps to identify clusters at 
subcellular resolutions arising from rare and isolated cell types. Exemplary pairs of transcripts are marked 
with white arrows. b Ranked target and background sum counts for all targets and the corresponding 
technology-specific background probes (see Additional file 9: Table S4, Additional file 10: Fig. S6). c Analysis 
of the spatial distribution of target and background probes. Moran’s I (scaled from 0 to 1) was plotted against 
the median nearest neighbor distance. Higher values of Moran’s I and lower nearest neighbor distances 
indicate a non-random distribution. The gray area highlights low confidence probes based on the 0.05 
percentile of the nearest neighbor distance within a given range of Moran’s I 



Page 13 of 32Rademacher et al. Genome Biology          (2025) 26:176 	

(for example, a lowly expressed marker for a niche cell type) would exhibit some enrich-
ment (I > 0) and/or display clustering at the (sub)cellular level within isolated rare cell 
types that would result in a low minimal distance. By combining spatial autocorrelation 
signals with nearest neighbor distances, specific cut-offs can be established to identify 
targets that exhibit a lowly abundant signal that is not randomly distributed within tissue 
space (Fig. 5c, Additional file 10: Fig. S6a).

The spatial autocorrelation analysis was performed at the resolution of individual cells 
and their neighboring cells, while the distance to a transcript’s next nearest neighbor 
also encompasses subcellular distances. This distance tends to be small for transcripts 
primarily located in isolated rare cell types scattered throughout the tissue sections. We 
applied a 0.95 percentile cut-off for a given Moran’s I range, with four distinct ranges for 
each technique based on Supplementary Dataset 2. The number of confident transcripts 
increased for all techniques compared to the expression level analysis. On average, 7 ± 
3 (Xenium), 12 ± 3 (MC), and 17 ± 3 (Merscope) transcripts did not meet the threshold 
(as demonstrated in Fig. 5c). This indicates a slightly noisier signal for the latter method, 
which aligns with its higher average FDR value.

We also examined the spatial distribution of target and background probes in rela-
tion to the segmented area by measuring the ratio of probe signals inside and outside 
nuclei. This analysis yielded similar results for both target and background probes across 
technologies and tissue samples, even when using nuclear segmentation with no expan-
sion (Additional file 10: Fig. S6b,c). Thus, the majority of the signals from both target 
and background probes were located in the nucleus. Finally, we explored the distribu-
tion of detected molecules across the recorded z-levels for each technology. While MC 
and Xenium yield images for a wide range of z-values from below to above the actual 
sample, detected molecule numbers were high for all seven z planes for Merscope, and 
the distribution appeared to be cut off (Additional file 10: Fig. S6 d). This suggests that a 
significant number of molecules above and below the seven imaged planes in Merscope 
remain undetected.

Detection of cell types across platforms

To compare cell type identification across different technologies, we followed standard 
clustering workflows, assigned cell types based on the expression signatures identified 
in our previous MBEN study [20], and visualized the data using UMAPs (Fig.  6a–c, 
Additional file  11: Fig. S7). The overall cell type annotations were very similar for the 
iST methods, and the same major cell types were found across all platforms. However, 
inspection of the cluster heatmaps revealed differences in the detection efficiency of 
single transcripts that affect cell type assignment (Additional file 11: Fig. S7 d–f, Sup-
plementary Dataset 3). For example, a TULP1-positive cell type  (MC), a differentiated 
neuronal-like cell type marked by KHDRBS2  (Merscope), and CD19+ (Xenium)  were 
specific for the three different platforms. Thus, cell type annotations differ between tech-
nologies mainly due to lowly abundant transcripts detected better on one platform than 
on another. For example, as illustrated in Fig. 5b and c, the specificity of CD19 detection 
was similar to that of the background probe, which demonstrates the need to consider 
this technical aspect for cell type assignment.
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The “differentiated neuronal-like” annotation revealed subclusters for both Merscope 
and Xenium, while cell subtypes were identified for the stromal compartment by MC. 
Determining whether these subclusters represent distinct cell types or states requires 

Fig. 6  Clustering and cell type annotation for iST methods. Clustering was based on the shared set of 
96 genes in samples MB266, MB295, and MB299. The joint cell type annotation relied on the expression 
signatures of the different clusters described in Additional file 11: Fig. S7. a Clustering and UMAP visualization 
for MC (n = 106,403 cells). b Same as panel a, but for Merscope (n = 139,916 cells, MB266 and MB295 only). 
c Same as panel a, but for Xenium (n = 569,152 cells). d Images with cells colored according to their cluster. 
e Same as panel d, but for Merscope. f Same as panel d, but for Xenium. g Heatmap showing the z-scores of 
the enrichment or depletion of pairs of neighboring cell types compared to random distribution for MC with 
non-significant interactions shown in gray. h Same as panel g, but for Merscope. i Same as panel g, but for 
Xenium
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further investigation. The spatial distribution of cell types, along with the corresponding 
coloring, is shown for exemplary images and regions in Fig. 6d–f.

Next, we assessed the ability of the three automated iST platforms to capture spatial 
relationships between cell types by conducting a neighborhood analysis (Fig. 6g–i). All 
three platforms enabled the identification of three distinct neighborhoods: the nodular 
compartment containing astrocytic-like and differentiated neuronal-like cells, the inter-
nodular compartment characterized by cerebellar granule neuronal precursor (CGNP)-
like cells, and a stromal neighborhood enriched with stromal, vascular, and immune 
cells. These patterns appeared more distinct in Xenium and Merscope, likely due to the 
larger image area and cell number compared to MC. Finally, we evaluated the impact of 
using nuclear segmentation after reimaging with SDCM (Fig. 2g) on this analysis for two 
Xenium slides (MB266 and MB295, Additional file 12: Fig. S8).

While the major cell types (Fig.  6g–i) and their expression profiles were not drasti-
cally changed between the two different segmentations, some distinct differences were 
observed (Additional file 11: Fig. S7f, Additional file 12: Fig. S8b): (i) B cells and oligoden-
drocyte-like cells were undetected in the re-analysis. This is likely because they are rela-
tively rare cell types (0.81% and 0.27%, respectively) and the reanalysis was conducted 
only on smaller parts of the tissue sections. (ii) Late CGNP-like and stromal/meningeal 
clusters display distinct subclustering in the re-analysis. As mentioned above, the rel-
evance of these distinctions needs to be analyzed further. (iii) A population of migrating 
CGNP-like cells was identified by SDCM imaging and nuclear segmentation that could 
not be detected in the standard Xenium data. These migrating CGNP-like cells were 
concentrated in dense tissue areas, suggesting that improved imaging and segmentation 
lead to differences in transcript assignment that are particularly relevant for identifying 
cell types in the cell-dense regions of the tissue (Additional file 12: Fig. S8c–e).

Implementation of additional readouts after iST analysis

While the ST analysis offers a wealth of information on molecular cell profiles in their 
spatial tissue context, corresponding studies typically require integration with other 
readouts. Merscope enables the inclusion of protein co-detection through up to five 
oligo-conjugated antibodies. Similar methods have been announced for the MC and 
Xenium platforms. A frequently used alternative is to prepare consecutive tissue sec-
tions for ST and other readouts. However, in many cases, the cell-by-cell assignment of 
these consecutive sections can be cumbersome and effective only in certain areas. Other 
approaches involve conducting additional readouts on the same tissue by either reimag-
ing and subsequent image registration (MC and Xenium) or incorporating extra custom 
readouts directly into the ST run (Merscope). This is described here for three examples.

The first step involves virtual H&E staining of tissue following the MC run (Fig. 7a). 
Conventional H&E staining after the iST run is compatible with both MC and Xenium; 
however, it will hinder the subsequent acquisition of additional fluorescence signals, as 
the broad absorbance spectrum of hematoxylin interferes with nearly all fluorophores 
in the visible spectrum. This limitation can be bypassed by imaging DNA through DAPI 
staining (λex = 405 nm, λem = 445 ± 23 nm) and eosin (λex = 488 nm, λem = 521 ± 19 
nm), followed by transforming these signals into a virtual H&E staining (Fig. 7a) [30]. 
Factors such as cell type-specific shades of pink produced by eosin in brightfield images 
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or variations in cell autofluorescence cannot be fully addressed with the method used 
here. Nevertheless, it provides a valuable approximation whose applicability must be 
evaluated for each specific use case.

In Fig.  7b, we demonstrate that the Xenium slide can also be utilized for subse-
quent multiplexed immunostaining (up to 40 targets) on the Comet platform from 
Lunaphore (Additional file 13: Table S5). For our test case, we validated the presence 
of CD19+ B cells, which were detected on the Xenium but not on the MC and Mer-
scope systems. By employing immune (CD45) and B-cell (CD20) specific antibodies, 
along with Ki67 to stain cycling cells on the Comet system after a Xenium run, the 
immunostaining confirms the presence of CD19+/CD20+ B cells at both the tran-
script and protein levels.

The third example is the detection of a custom gene using the Merscope with sig-
nal amplification [31] (Fig. 7c). Overhangs on the primary probe are hybridized by 
the primary amplification probe, which then serves as a binding site for the second-
ary amplifier (Additional file 14: Table S6). The secondary amplifier can be detected 
using auxiliary probes in the Merscope chemistry. Nestin (NES), as an exemplary 
custom RNA target, was identified via an auxiliary probe on the Merscope and 
showed enrichment in the nodular structure (dashed outline). Signal amplifica-
tion allowed for the detection of NES using only two primary probes instead of 30 
in the original workflow. This workflow could potentially be used to detect short 
transcripts or gene fusions. Additionally, these auxiliary probes may also facilitate 

Fig. 7  Additional readouts after iST analysis. a Virtual H&E staining of MBEN tissue after MC run. b 
Immunostaining on the Comet system after the Xenium run. Transcript signal is given as a single dot while 
the protein image reflects the original fluorescent signal. c Amplified readout of nestin (NES) as an exemplary 
custom RNA via the auxiliary channel on the Merscope
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protein co-detection through oligo-conjugated antibodies, which we did not test in 
our experiments.

In summary, all three automated iST platforms allow for the integration of pro-
tein readouts, although MC and Xenium offer somewhat greater flexibility since the 
overall tissue structure remains intact during the experiment. However, it is impor-
tant to note that the iST platforms use different tissue fixation chemistries, which 
may require antibody testing before conducting the experiments.

Selecting a platform for a specific application

To guide selecting a method for a specific application, we compared key features of auto-
mated iST platforms (Table 1). Based on our experience, each platform presents unique 
advantages tailored to various research goals. MC is particularly effective for analyzing 
a limited number of samples, offering a versatile format for validation experiments, with 
its standard reagent kit supporting 8 tissue sections per slide and a panel of 100 custom 
genes. Merscope stands out with larger tailored panels (up to 960 genes), while Xenium 
is designed for large-scale datasets, facilitating the analysis of many samples or large tis-
sue areas.

From a practical implementation perspective, MC and Xenium showcase user-friendly 
protocols with straightforward washing and incubation steps. In contrast, Merscope 
requires more extensive hands-on time and optimization for essential steps, includ-
ing tissue clearance, quenching, and gel formation, which carry the risk of sample loss 
if detachment occurs. While the microscope and liquid handling systems across all 
platforms generally performed reliably, we noted specific technical challenges: MC 
occasionally encountered issues with sample transport and liquid handling due to its 
modular robot arm setup. In this system, readout probes are removed after each imaging 
round, allowing the entire workflow to be restarted in case of a power outage or system 
malfunction. This option is not available for Merscope, as the fluorophores become irre-
versibly bleached during imaging and are not removed. Merscope required meticulous 
objective alignment and readjustment, and Xenium sometimes experienced dispensing 
or data processing issues. Overall, Merscope exhibited the fewest aborted runs dur-
ing our trials, probably due to the microfluidic-based liquid management. However, we 
emphasize that these technologies are rapidly evolving, and our observations reflect only 
current implementations. Based on our comparative analysis, researchers should prior-
itize the following key factors when selecting a platform:

1.	 Reimaging capabilities: Reimaging can significantly improve cell segmentation accu-
racy, which is particularly critical for 3D applications. Xenium’s limited z-resolution 
in the DAPI channel (3 µm slice distance) makes 3D segmentation challenging, while 
Merscope’s tissue-clearing process precludes subsequent imaging modalities like 
DNA-FISH.

2.	 Resolution and data accessibility: While all platforms provide sufficient resolution 
for ST applications, MC exhibited superior optical resolution (352 ± 50 nm) when 
compared to Merscope (480 ± 85 nm) and Xenium (474 ± 55 nm). Access to raw 
image data is essential for troubleshooting low transcript counts or high background 
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signals. Notably, Xenium was the only system that entirely restricted access to the 
original transcript image data.

3.	 Workflow complexity and hands-on time: Both Xenium and MC require approxi-
mately 1.5 days for slide preparation, using straightforward protocols suitable for 
various tissue types. Merscope demands significantly more time (5–7 days), using 
complex procedures, including gel embedding, that require specialized technical 
expertise.

4.	 Probe panel customization: Although all platforms support custom gene panels, 
their implementation varies. MC offers simple 100-gene custom panels, Merscope 
provides the highest custom-designed panel capacity (up to 960 genes), and Xenium 
boasts extensive catalog panels with additional customization options.

5.	 Tissue size and placement considerations: To efficiently use resources, it is important 
to match tissue dimensions to platform capabilities (Additional file 2: Fig. S1). MC 
accommodates multiple small samples in separate areas (ideal for our MBEN case 
with multiple patient samples). At the same time, Merscope and Xenium offer larger 
continuous imaging areas better suited to extensive tissue sections. Tissue placement 
is most challenging with Merscope due to its confined area and unmarked round 
slide format.

6.	 Data analysis support: All systems provide transcript coordinates, DAPI images, and 
quality reports, but only Merscope and Xenium include built-in cell segmentation. 
Xenium also offers standard gene expression clustering, potentially reducing down-
stream analysis complexity.

In summary, MC offers an excellent balance of flexibility and straightforward imple-
mentation for validation experiments with smaller sample sizes. Researchers looking for 
larger gene panels with integrated protein detection should consider Merscope despite 
its more complex workflow. For large-scale studies involving multiple samples or tis-
sue areas, Xenium provides the most efficient high-throughput solution. These factors 
should guide the platform choice based on specific research goals and practical con-
straints. Additionally, it is crucial to consider the technological advancements of com-
mercial platforms, which may require a re-evaluation of one or more of the categories 
discussed above.

Discussion
Our comparative analysis of six different ST methods utilized MBEN cryosections as 
a case study. Due to its characteristic microanatomy featuring two distinct tumor cell 
compartments, this entity is particularly intriguing for an ST analysis of the interactions 
between proliferation, migration, and differentiation of cancer cells [20]. Furthermore, 
an ST analysis provided significant insights into the spatial relationships among tumor 
subclones and proliferating tumor cells in Group 3/4 medulloblastomas, as reported in 
two recent studies [32, 33].

The present study provides valuable insights into the application of ST technologies 
specifically for tumor cryosections, which can differ from non-malignant tissue, as illus-
trated by the high local cell density observed for MBEN. Other tissue and sample types, 
such as mouse brain sections or FFPE samples, have unique requirements for optimizing 
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ST analysis. Additionally, despite our efforts to standardize protocols and improve com-
parability, technical variability arises from differences in the complex experimental and 
data analysis workflows. Factors such as tissue handling, staining efficiency, and cali-
bration of instrument imaging settings impact sensitivity and specificity. Consequently, 
these factors may influence results in an experiment-dependent manner, not necessarily 
reflecting platform-related differences. Moreover, ST technologies are rapidly evolving 
with continuous improvements in chemistry, experimental data acquisition, and updates 
to instrument-specific software. For instance, the MC 1.0 instrument will be replaced 
by a new system, and new chemistry versions have been consistently released for vari-
ous workflows. Therefore, our study was not designed to select “the best” technology. 
Instead, we aim to identify key differences between methods and critical steps in the 
workflow that deserve consideration (Table 1). Factoring these into both experimental 
design and result assessment aids in choosing a specific platform.

Including snRNA‑seq data

The snRNA-seq data serve as an excellent reference for selecting the probe panel for 
targeted iST methods. The sST methods such as Visium, Slide-seq/Curio Seeker [34] 
and others can also provide this information. Based on our experience, the snRNA-
seq approach is more straightforward as it utilizes established single-cell sequencing 
workflows, with the caveat that the data depend on the quality and quantity of the iso-
lated nuclei used as input. Moreover, the sc/snRNA-seq data can be integrated with 
the iST data using tools like Cell2Location [35] to enhance sensitivity and resolution. 
New panel design tools have been released to account for platform characteristics 
[36]. Additionally, snRNA-seq data also serve as a reliable reference for assessing the 
quality and coverage of the ST data.

Number of probes

With good a priori information (e.g., from snRNA-seq), even relatively small probe 
panels like the 10 genes used for RNAscope have already resolved the main cell 
types (Additional file 11: Fig. S7b). Therefore, 100 well-selected genes could be more 
informative than several times that number of probes from a more generic catalog 
panel. Furthermore, the snRNA-seq data offer an excellent reference to assess the 
suitability of the iST probe panel. The latter can be utilized to perform probe-specific 
subsetting, clustering, and UMAP visualization based on the snRNA-seq data, and 
then evaluate the quality of the resulting cell type resolution [37].

Cell segmentation

In comparative ST studies, mouse brain tissue is often used as a reference. However, 
cancer tissues like the MBEN sections analyzed here typically have a much higher cell 
density, making segmentation more challenging. We have found that optimizing DAPI 
imaging—regarding both staining and image acquisition—can significantly enhance 
results. Furthermore, using Cellpose for nuclei segmentation yields robust results. 
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Because of the high cell density in the tissue, the loss of information from transcripts 
outside the nuclei had no apparent negative impact on the downstream analysis in our 
study. In addition to Cellpose, other powerful cell and nuclei segmentation tools are 
available, including Mesmer [10] and Stardist [38], as well as iST-specific tools like Bay-
sor [9], SCS [39], and BIDCell [40]. We also recommend testing whether optimizations 
in the cell segmentation process translates into improvements in downstream analysis 
results since this part of the workflow can become quite time-consuming. Finally, several 
pipelines have been published that allow for the automated preprocessing of iST data, 
such as Molkart for MC [41] and the technology-agnostic SOPA [42].

Sensitivity

The unbiased sST analysis by Visium encompasses the complete transcriptome. How-
ever, its detection sensitivity and spatial resolution were inadequate to resolve the 
MBEN microanatomy, significantly limiting its application in our case study. This aligns 
with recent findings by You et al. [43] indicating that Visium’s lower spatial resolution 
constrained its ability to delineate fine tissue features. Other sequencing-based meth-
ods, such as Seq-Scope [44], Stereo-seq [45], Slide-seq/Curio Seeker [34], and Visium 
HD, offer greater subcellular spatial resolution. However, it should be noted that a suf-
ficient quantity of RNA molecules/probes needs to be captured per area, which may 
necessitate spatial binning at the cost of spatial resolution. Furthermore, the sensitivity 
of sequencing-based spatial technologies is contingent on read depth, unlike imaging-
based workflows that consistently achieve full coverage in terms of transcript num-
bers. Enhancements in image resolution, for example, through structured illumination 
microscopy (SIM) [46] or other super-resolution techniques, may mitigate crowding 
effects that can restrict sensitivity and/or specificity.

Overall, the sensitivity of all three automated iST platforms used in our study was high 
and very similar. For the non-amplified Merscope method, values of 50% [47] or 80% 
[48] have been previously reported for the detection rate with cell line samples using 
a custom microscope and expansion. Using snRNA-seq as a reference for our analysis 
of transcripts per cell (Fig.  3b, Additional file  7: S5b–d), we estimate that the average 
detection efficiency in our experiments was between 33 and 37%. However, it is essen-
tial to consider that a transcripts per cell analysis can be biased for iST methods. When 
specific probe panels with limited numbers of markers per cell type are used, different 
tissue compositions (i.e., varying abundances of the nodular and internodular compart-
ments in our study, see Fig. 6d–e) will lead to different mean transcripts per cell, even 
if the sensitivity remains the same. This is especially true since the expression levels of 
markers for different cell types typically vary. Nonetheless, we utilized the transcripts 
per cell metric as a proxy for sensitivity, assuming these effects would average out when 
using tissue samples from different patients as we did. It should be noted that sensitivity 
depends on the integrity of the RNA, which is usually very good for fresh frozen mate-
rial. In contrast, RNA degradation can be significant in FFPE samples, likely resulting in 
substantial differences between technologies, as recently reported [17].
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Specificity

Specificity depends on both probe and tissue features, making it difficult to assess this 
parameter quantitatively. Cook et al. [16] established spatial autocorrelation analysis as 
a robust metric for evaluating specificity across tissue types, a method we expanded to 
compare target versus background probe distributions. The background probes used in 
the various systems typically overlap with low signal target probes. Consequently, there 
is no clear cutoff regarding true negatives and false positives in terms of cumulative 
counts. Incorporating the spatial distribution of probes as an additional parameter to 
differentiate between random and more localized, genuinely specific binding is beneficial 
but also necessitates a probe-by-probe interpretation of the results. As demonstrated 
here, analyzing distribution patterns through spatial autocorrelation and next-nearest-
neighbor distance analysis can offer valuable insights into probe specificity, regardless of 
global expression levels, which can sometimes present misleading results.

Reimaging and including additional readouts

Reimaging the tissue enhances image quality for segmentation and/or incorporates 
additional readouts, benefiting from the non-destructive sample processing and slide 
format of MC and Xenium. The preferred method for achieving improved resolution 
and a higher signal-to-noise ratio is using SDCM systems equipped with highly sensi-
tive sCMOS or EMCCD cameras. We found that imaging with point confocal micro-
scopes was too slow for larger tissue areas. For mouse brain tissue, Hartman and Satija 
[19] demonstrated that better imaging and segmentation enhanced cell type resolu-
tion, which supports our findings regarding reimaging approaches. Alternatively, it 
is also possible to conduct an additional analysis on automated commercial widefield 
platforms, as shown here for the immunostaining on the Comet system following the 
Xenium run (Fig. 7b).

The Merscope samples are less suitable for reimaging due to their slide format and 
sample clearing. However, the platform integrates membrane staining into the standard 
workflow (a feature that also became available for other systems) and offers additional 
custom readouts via its auxiliary channels. The latter can be used flexibly, for instance, 
with signal amplification, as illustrated in Fig.  7c, or for antibody staining. Currently, 
alongside ST methods, various spatially resolved (epi)genome, proteome, and metabo-
lome readouts are becoming available that are, in many cases, non-destructive and 
compatible with one another [4, 7, 49]. Thus, both commercial instruments and custom 
academic workflows are emerging in spatial multi-omics approaches that will further 
enhance the depth of insight gained from analyzing the same tissue section, as opposed 
to combining separate analyses of consecutive sections [4, 49, 50].

Conclusions
In summary, by utilizing MBEN as a model system, we have developed a technology-
agnostic framework applicable to diverse tissue types. This framework includes spatial 
autocorrelation analysis, sensitivity metrics based on snRNA-seq comparisons, and 
standardized resolution measurements. We find that for cryosections of tumor tissue, 
where RNA quality is likely less of an issue, all three automated iST methods performed 
very well regarding their sensitivity and specificity in our case study. Additionally, the 
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spatial distribution of cell types, annotated based on the shared set of 96 genes stud-
ied, yielded very similar representations of the MBEN tissue microanatomy and cellu-
lar neighborhoods. Our findings complement several recent comparative studies of ST 
technologies across various tissue types and sample preparations. A broad comparison 
across six cancer types conducted by Cervilla et al. [51] reported comparable cell type 
identification capabilities among automated iST platforms, which aligns with our MBEN 
tissue observations. Thus, choosing one technology platform over another depends on 
the selection criteria discussed earlier. These criteria arise from differences in the tech-
nologies and their implementation and the associated requirements for practical work 
regarding both experimental and data analysis aspects. Notably, the analytical frame-
work we developed—combining spatial statistics, segmentation quality assessment, 
and background probe analysis—provides metrics that can be applied across various 
tissue types and ST platforms to guide technology selection based on specific research 
objectives.

Methods
Tissue samples

The MBEN samples MB263, MB266, MB295, and MB299 used in this study have been 
previously described [20], and their analysis with the various technologies is detailed in 
Additional file 1: Table S1. Cryosections of 10 µm thickness were obtained using a Cry-
ostar NX50 (Epredia) cryostat at a cutting temperature of −15 °C for all technologies. 
Subsequent storage and processing were carried out in accordance with the standard 
protocols provided for each workflow, as detailed below.

snRNA‑seq

The snRNA-seq data were sourced from ref. [52] and obtained using the Chromium 
drop-seq platform with the 3′-Single Cell RNA-sequencing v2 kit (10x Genomics).

Visium

Tissue slices of 10 µm were placed on the Visium slides and fixed with methanol at −20 
°C. After H&E staining, the samples were imaged using an Olympus VS200 scanner, and 
the tissue was lysed for 4 min according to the tissue optimization results obtained pre-
viously. Visium libraries were generated following the manufacturer’s recommendations. 
Libraries were quantified using TapeStation and Qubit and sequenced on a NovaSeq 
6000 machine, pooling four libraries per lane.

RNAscope

The RNAscope data [52] included 10 targets (Supplementary Dataset 1) and were 
obtained as described in ref. [20] using the RNAscope HiPlex assay (ACD/Biotechne) 
according to the RNAscope HiPlex Assay User Manual (324,100-UM) from the man-
ufacturer with minor adaptations. For MB266 and MB299, four transcripts (labeled 
with Alexa488, Atto550, Atto647, and Alexa750 fluorescent dyes) were imaged in three 
rounds, while for MB295, three transcripts (Alexa488, Atto550, Atto647, and DAPI) 
were imaged in four rounds using the RNAscope HiPlex Alternate Display Module 
(R1-R4). Flatfield correction was performed based on DAPI images and used for nuclei 
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segmentation with Cellpose as detailed below. Spot calling of transcripts was done on 
maximum intensity projections with RS-FISH. Called transcripts from all rounds and 
colors were reformatted and combined into an output file in MC format.

Molecular Cartography

The MC data from ref. [53] were collected using the probe set provided in Supplemen-
tary Dataset 1. In brief, the tissue sections were cut at −15 °C, and 10 µm sections were 
placed on MC slides in their respective areas. After placement, tissue adhesion was facil-
itated by briefly warming the tissue with fingertips. Slides were stored at −80 °C for less 
than one week before processing. These data were additionally analyzed here by restain-
ing them with DAPI and reimaging them on the Andor Dragonfly SDCM system. Image 
processing followed the workflow depicted in Fig. 2a, which included stitching, correc-
tion, and registration as described in greater detail in the image analysis section below. 
The resulting images were then processed using the resolve-processing pipeline (https://​
github.​com/​scOpe​nLab/​resol​ve_​proce​ssing). First, the images were enhanced using con-
trast limited adaptive histogram equalization (CLAHE) [54] with a kernel size of 127, a 
clip limit of 0.01, and 256 bins. The processed images were then segmented using Cell-
pose2 with the “cyto” model, applying a probability threshold of one and a cell diameter 
of 70. After cell segmentation, transcripts were deduplicated with MindaGap software 
(https://​github.​com/​Viria​toII/​Minda​Gap), using a tile size of 2144 and a window size of 
30, accounting for shifts calculated from transcripts with fewer than 400 copies in the 
window and occurring at least 10 times. Finally, transcripts were assigned to cells based 
on their overlap with the segmentation mask and analyzed as described below.

Merscope

Tissues were sectioned into 10 µm slices and placed on one Merscope slide. Subse-
quently, the tissue was fixed with 4% PFA at 37 °C for 15 min. After washing with PBS, 
the sections were permeabilized with 70% ethanol and stored at 4 °C until hybridization 
began, which was less than two weeks later. The panel (Supplementary Dataset 1) was 
hybridized for 48 h, and all steps were performed according to the manufacturer’s proto-
col, including the membrane staining.

Xenium

Tissues were sectioned into 10 µm slices, and four samples were placed on a single 
Xenium slide. After sectioning, the slides were stored at −80 °C for less than 2 weeks. 
On the day of the experiment, the tissue was fixed with PFA according to the manu-
facturer’s protocol. Tissues were permeabilized with SDS, incubated in 70% ice-cold 
methanol, and washed with PBS. Hybridization of the human generic brain panel with 
70 add-on genes (Supplementary Dataset 1) was performed at 50 °C in a Bio-Rad C1000 
touch cycler for 20 h. The washing, ligation, and amplification steps were carried out 
according to the manufacturer’s instructions. ROIs were selected based on the tissue 
area, excluding non-tissue-covered tiles. Each transcript was imaged in a bright state five 
times across 60 cycle-channels (15 cycles × 4 channels). After the run on the Xenium 
analyzer, slides were removed, and buffer was exchanged with PBS-T for further storage 
at 4 °C.

https://github.com/scOpenLab/resolve_processing
https://github.com/scOpenLab/resolve_processing
https://github.com/ViriatoII/MindaGap
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H&E staining

H&E staining of Visium slides was performed by first removing the coverslip through 
incubation in 1 × PBS Buffer, followed by washing with H2O. Next, slides were incubated 
in hematoxylin solution for 7 min and then washed with H2O. Following this, 300 µl of 
bluing solution was added to the tissue, incubated for 2 min at room temperature, and 
then washed with H2O. Staining with eosin solution (Sigma, diluted 1:10 in 0.45 M Tris 
acetic acid, pH6) was carried out for 1 min at room temperature, followed by washing 
with H2O. Subsequently, slides were dehydrated through a series of washes in 70% (30 s), 
95% (30 s), and two washes in 100% (1 min) ethanol, before being stored at room tem-
perature. Virtual H&E staining followed the approach described previously [30]. Sec-
tions were stained with eosin solution for 1 min at room temperature, washed in H2O, 
and incubated for 15 min in 4 × SSC (saline-sodium citrate) buffer. Sections were then 
stained with DAPI for 30 s and mounted in Prolong Gold Antifade (Thermo Fisher Sci-
entific). The H&E coloring of the DAPI and eosin staining was conducted in R using the 
EBImage [55] along with custom scripts.

Spinning disk confocal fluorescence microscopy

Imaging of RNAscope samples and reimaging of MC and Xenium slides via SDCM were 
performed on an Andor Dragonfly 505 spinning disk confocal system, which is equipped 
with a Nikon Ti2-E inverted microscope and either a CFI P-Fluor 40×/1.30 oil objective 
or a Plan Apo 60×/1.40 oil objective. Multicolor images were captured using laser lines 
of 405 nm (DAPI), 488 nm (Alexa 488, eosin), 561 nm (Atto 550), 637 nm (Atto 647), and 
730 nm (Alexa 750). The images were recorded at a 16-bit depth and with dimensions of 
1024 × 1024 pixels per tile (pixel size: 0.301 µm or 0.217 µm for the 40× or 60× objec-
tive, respectively) using an iXon Ultra 888 EMCCD camera. The region of interest was 
chosen based on the DAPI signal, and 50 z-slices were captured with a step size of 0.4 
µm (20 µm z-range) for each field of view (FOV). Tiles were imaged with a 10% overlap 
to ensure accurate stitching. Subsequently, flatfield correction was performed based on 
the DAPI channel, and the stitching and registration of the tiles were conducted using 
Fiji as described below.

Merscope amplification

Gene-specific probes and amplification oligonucleotides were tested using the protein 
verification kit provided by Vizgen for the Merscope. A list of primary, secondary, and 
amplification probes is available in Additional file  14: Table  S6. The tissue was fixed 
and permeabilized as described above, washed with 30% formamide in 2 × SSC (wash 
buffer), and incubated with the primary probes at a 1 µM concentration in hybridization 
buffer (0.05% yeast rRNA, 1 U/µl RNase inhibitor, 30% formamide, 2 × SSC, 10% dex-
tran). After 36 h of incubation at 37 °C in a humid environment, the tissue was washed 
three times with wash buffer at 47 °C. The tissue was embedded according to the manu-
facturer’s instructions and incubated in clearing solution for 24 h. Then, the tissue was 
washed with amplification buffer (10% formamide, 2 × SSC), and the primary amplifier 
was hybridized at 5 nM in hybridization buffer (0.05% yeast rRNA, 1U/µl RNase inhibi-
tor, 10% formamide, 2 × SSC, 10% dextran) for 30 min at 37 °C. After three washes with 
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amplification buffer, the secondary amp probe was hybridized at a 5 nM concentration 
in amp hybridization buffer (0.05% yeast rRNA, 1U/µl RNase inhibitor, 10% formamide, 
2 × SSC, 10% dextran) for 30 min at 37 °C. Following three washes, the verification rea-
gent was added for 15 min, followed by a formamide and sample prep wash. The readout 
of the amplification probe was performed with the protein verification kit (mouse, rab-
bit, goat), utilizing only the mouse and rabbit channels.

Sequential IF using the Comet platform

After the Xenium run was completed, the slides were washed twice with PBS and then 
placed in the Comet system (Lunaphore). The immuno-oncology SPYRE panel (Addi-
tional file 13: Table S5) was used to stain and image the tissue section of sample MB299 
using the standard SPYRE protocol on a Comet 1.0 instrument.

Preprocessing of iST data for downstream analysis

For Xenium datasets (post XeniumRanger), we cropped selected areas because some 
tissue sections were folded, wrapped, and disrupted. This is done to eliminate poten-
tial issues in further downstream analysis steps. A custom script is available at https://​
github.​com/​alikh​useyn​ov/​add-​on_R/​blob/​devel​op/R/​crop_​seurat_​v1.R, and related dis-
cussion can be found here https://​github.​com/​satij​alab/​seurat/​issues/​8457.

Cell segmentation

For cell segmentation, the methods utilized in the Merscope (Cellpose2 for nuclei 
segmentation or cell segmentation paired with an additional cell boundary stain) and 
Xenium systems (nucleus segmentation using a custom neural network followed by a 
15-µm Voronoi-based cell boundary expansion) were employed. For MC, cell segmen-
tation was conducted with Cellpose2 as described above [8]. For independent seg-
mentation of the DAPI images of nuclei and cell membrane staining, when applicable, 
Cellpose2 was utilized. The corresponding scripts to overlay images with the segmenta-
tion results were created using the R script BrushUpSegmentationResults.R.

Image processing and integration with ST data

Widefield images from the MC and Xenium platforms were integrated with reimaged 
SDCM data using the following workflow in ImageJ. First, SDCM image stacks under-
went a maximum intensity projection, followed by flat field and chromatic aberration 
correction using a custom script. Next, image tiles were stitched together using the 
“Grid/Collection Stitching” plugin. DAPI images from SDCM were registered to MC 
or Xenium widefield images via “Register Virtual Stack Slices” with the Affine feature 
extraction model and the Elastic bUnwarpJ splines registration model. In the case of fur-
ther staining, images were transformed using Transform Virtual Stack Slices, employ-
ing the transformation file of the DAPI registration to all other image channels. Custom 
scripts are available on GitHub [56] and Zenodo [57]. Additional data analysis software 
included roifile [58], Pillow [59], tifffile [60], opencv-python-headless [61], QuPath [62], 
and sf (simple feature access) [63].

https://github.com/alikhuseynov/add-on_R/blob/develop/R/crop_seurat_v1.R
https://github.com/alikhuseynov/add-on_R/blob/develop/R/crop_seurat_v1.R
https://github.com/satijalab/seurat/issues/8457
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Combining data sets

Most of the analysis and visualization (including tidyverse, data.table, ggridges R pack-
ages) was conducted in R 4.2.2 and Bioconductor 1.30.18 R packages [64]. Raw data were 
processed using technology-specific corporate pipelines (a custom pipeline was used for 
MC). For each technology, Seurat objects of the sample data and analysis results were 
created using the Seurat (v. 4.3.0) R package [65]. To load Vizgen/Merscope data and 
making a Seurat object, we optimized a loading function (see this PR https://​github.​
com/​satij​alab/​seurat/​pull/​7190), which was also separately tested by Vizgen.

MC Seurat objects were created from the ROI file, segmentation mask, deduplicated 
transcripts, and cell expression matrix generated with the resolve_processing pipeline 
(https://​github.​com/​scOpe​nLab/​resol​ve_​proce​ssing, described above) using custom R 
scripts (https://​github.​com/​scOpe​nLab/​resol​ve-​analy​sis). We merged technology-spe-
cific object subsets for the same matching genes (96 in total) into a single object. When 
comparing to RNAscope, only 10 matching genes were used. Cells with zero counts were 
removed. To address issues with the subset function on Seurat objects with spatial FOVs 
(see https://​github.​com/​satij​alab/​seurat/​issues/​6409, https://​github.​com/​satij​alab/​seu-
rat/​issues/​7462), we wrote and used an optimized version, which is available on GitHub 
[66] and Zenodo [67].

Analysis of transcript counts per spatial bin or cell/nucleus

The distribution of transcript and feature/gene counts was analyzed for the shared set 
of 96 genes (Supplementary Dataset 1). It was either based on the number of transcripts 
in spatial bins with the size of a Visium spot of 55 µm diameter and 2375 µm2 area, cor-
responding to a square side length of 55µm/2 ·

√
π = 48.74µm , or on transcripts per 

nucleus/cell following segmentation. The spatial binning enables an unbiased compari-
son at the chosen bin size, free from confounding effects related to cell/nucleus segmen-
tation. At the gene level, we computed the mean transcript counts across all cells and 
compared these values among the different technologies. We performed pairwise gene 
expression correlation analysis (Pearson correlation) for selected markers within indi-
vidual cells. The similarity to the RNAscope pattern was subsequently calculated as the 
coefficient of determination (R squared) of the correlation coefficients (Additional file 8: 
Table S3).

Specificity analysis using background probes

To evaluate the specificity of iST methods, we used the probes included with the rea-
gents for MC (25 false positive probes), Merscope (40 blank probes), and Xenium (128 
unassigned codeword probes) (Supplementary Dataset 1), which we refer to here as 
background probes. The signals of 96 shared target genes and the background were 
related based on their coordinates in a segmentation-free manner. We determined the 
number of target probes overlapping with the background signal by counting the spots 
of a given probe per tissue and ranking the sum of the probe signals. Averaged FDR val-
ues were calculated from the same data as.

FDR(%) =
background_barcode_calls

number_of_background_barcodes
·

number_of_target_genes

total_target_gene_calls
· 100.

https://github.com/satijalab/seurat/pull/7190
https://github.com/satijalab/seurat/pull/7190
https://github.com/scOpenLab/resolve_processing
https://github.com/scOpenLab/resolve-analysis
https://github.com/satijalab/seurat/issues/6409
https://github.com/satijalab/seurat/issues/7462
https://github.com/satijalab/seurat/issues/7462
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To evaluate the spatial distribution of target and background probes at the cellular 
level, the spatial autocorrelation for each probe was calculated as Moran’s I using the 
moranfast R package (C++ implementation). This function is similar to Moran I from 
the ape R package, which is faster for large datasets. The input for computing Moran’s 
I with moranfast included the transcript counts per cell and the xy coordinates of the 
cell centroids. The spatial neighborhood was defined using a distance-based (Euclidean) 
approach that calculates distances r between pairs of cell centroids, resulting in a dis-
tance matrix. The weighted inverse distance matrix was calculated as 1 divided by the 
distance matrix, meaning that the larger the resultant weight, the closer the cell cen-
troids. This method was selected over spatial contiguity-based approaches (queen, rook, 
hexagon, bishop spatial neighbors) since it does not require the cell borders or polygons 
to touch each other. Bounds of global Moran’s I usually go from − 1 to + 1 (similar to 
Pearson correlation coefficients) [68]. A value around 0 indicates a spatially random pat-
tern, < 0 towards − 1 indicates negative spatial autocorrelation (chessboard-like pattern), 
and > 0 towards 1 indicates positive spatial autocorrelation (clustered, also gradient-like 
patterns). The actual lower and upper bounds would depend on the spatial neighbor-
hood network (graph) and may have extreme values [69, 70]. This approach provides 
the spatial autocorrelation between transcripts at a cellular resolution. Since our dataset 
exhibited no significant anticorrelation, only fluctuations around 0 (≥ − 0.002) as the 
lower limit, we utilized min–max scaled Moran’s I from 0 to 1 in the displayed plots.

As an alternative molecule-level approach to assessing spatial relations between the 
signals of a given probe, the distance to its nearest neighbor was calculated using the 
FNN R package with the kd-tree search algorithm. The median of the resulting distribu-
tion was then used as the minimal distance value for further analysis (Supplementary 
Dataset 2).

Resolution analysis with fluorescent beads

Ultra Rainbow Fluorescent Particles (0.31 µm, Spherotec) were mixed 1:1 with 20% 
matrigel in PBS (v/v). Around 50 µl of this bead dilution were added to the Merscope, 
Xenium, or MC glass slides, and incubated for 40 min at RT. Subsequently, the liquid 
was aspirated, PBS was added, and the respective imaging runs were started. For confo-
cal imaging, the beads were prepared similarly with the following differences: the beads 
were diluted 1:6 in 20% matrigel in PBS (v/v) and then mounted with prolong antifade.

On the resulting preprocessed images from each technology, the beads were identified 
as local maxima. For MC, the image was thresholded to exclude pixels with intensity 
< 900 and > 5000; for Xenium, only the 6 th z plane was used, and a threshold of 100 was 
applied to pixel intensities; for Merscope, a threshold of 7000 was used before a white 
tophat filter with a 10-pixel disk kernel was applied; for confocal imaging, a threshold 
of 5000 was applied to pixel intensities. The skimage.feature.corner_peaks function 
from scikit-image [71] was used to identify the peaks. For each peak, pixels at the cor-
responding coordinates were extracted for each of the X-, Y-, and Z-axes. These values 
were then employed to calculate the FWHM of the signal intensity with the scipy.signal.
peak_widths function from the scipy package [72]. In Additional file 4: Fig. S2, medians 
are reported for the x- and y-direction separately. In the main text and Table 1, only the 
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median of both x and y FWHM is reported. The variability of the values is reported as 
median absolute deviation (MAD):

Signal‑to‑noise and signal‑to‑background analysis

We called spots on the primary MC images using RS-FISH to assess the quality of the 
primary RNA signals. Line profiles spanning ten pixels to the left and right (in x-direc-
tion) from the called signal spot were quantified. For normalization, the intensity of 
the darkest pixel of the image Idark was subtracted from all raw intensity values Iraw: 
I = Iraw − Idark. The signal-to-noise ratio SNR was then calculated as follows:

where I(0) is the peak intensity at the center, µbg is the mean background intensity 
( µbg = mean(I(x)), x5 ∨ x > 5 ) and σbg = sd(I(x)), x5 ∨ x > 5 is the standard deviation 
of the background intensities. The signal-to-background ratio (SBR) is given by:

Integration, clustering and cell type annotation

We used Seurat’s SCTransform [73] and RunPCA to normalize the data. Batch cor-
rection was performed using the Harmony v1.0 [74] R package on only two samples 
(MB266 and 295) for each technology separately (MC, Xenium, Merscope). When inte-
grating snRNA-seq with these three spatial technologies, batch correction was also 
applied to samples from the merged object (snRNA-seq, MC, Xenium, Merscope). Clus-
tering was conducted for each technology on an integrated object using the Leiden algo-
rithm [75], and results were visualized as UMAPs (all performed using Seurat). Cell type 
annotations were manually assigned based on the gene expression signatures previously 
reported [20].

Neighbourhood analysis

The neighborhood analysis was conducted using a custom neighborhood_analysis R 
script [66, 67]. The 10 nearest neighbors of each cell were identified through the Euclid-
ean distance between centroids, utilizing a KNN-tree in conjunction with the DBSCAN 
package [76]. Subsequently, the distribution of cell types within this set of neighbors was 
compared to a random distribution achieved by performing 10,000 permutations of the 
cell types assigned to each neighbor. The false discovery rate of these comparisons was 
managed using the Benjamini–Hochberg procedure [77].

MAD = median Xi −median(X)

SNR =
I(0)− µbg

σbg

SBR =
I(0)

µbg
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